Problem 1. (5 points)

Consider the three exponential functions $f(x)=a \cdot b^{x}$, in red, $g(x)=c \cdot d^{x}$, in blue, and $h(x)=p \cdot q^{x}$, in green, graphed below where a, b, c, d, p, q are constants.

For each statement below, enter all of the possible constants (letters a, b, c, d, p, or q) as a list of letters in any order without any separating commas. For example a possible answer could be apdq which is equivalent to paqd (or any other order of these four constants), but a, d, p, q would not be graded correctly because it includes commas.
(a) Which of these constants are definitely positive?
(b) Which of these constants are definitely greater than 1? \qquad
(c) Which of these constants could possibly be between 0 and 1 ? \qquad
(d) Which of these constants could possibly be greater than the value of p ? \qquad
(e) Which two of these constants are definitely equal?

(Click on graph to enlarge)
Answer(s) submitted:

(incorrect)

Problem 2. (2 points)

The population of a colony of rabbits grows exponentially. The colony begins with 5 rabbits; 5 years later there are 360 rabbits.
(a) Express the population of the colony of rabbits, P, as a function of time, t, in years.
$P(t)=$ \qquad
(b) Use the graph to estimate how long it takes for the population of rabbits to reach 1000 rabbits.
It will take \qquad years. (round to nearest 0.01 year)
Answer(s) submitted:
-
(incorrect)

Problem 3. (4 points)

Let $P=f(t)=750(1.045)^{t}$ be the population of a community in year t.
(a) Evaluate $f(0)=$ \qquad
(b) Evaluate $f(10)=$ \qquad (retain at least 3 decimal places)
(c) Which of these statements correctly explains the practical meaning of the value you found for $f(10)$ in part (b)? (select all that apply if more than one is correct)

- A. How many years it takes for the population to reach 10,000 people.
- B. How much the population will increase in 10 years.
- C. What the population will be in 10 years.
- D. The growth rate per decade of the population.
- E. The initial population of the community.
- F. How long it will take for the population to increase by 10 people.
- G. None of the above
(d) If the percentage growth rate remains constant, approximately when will the population reach 1900 people?
In \qquad years (round to the nearest whole year).
Answer(s) submitted:
-

\bullet
\bullet
-
(incorrect)

Problem 4. (1 point)

Suppose t_{0} is the t-coordinate of the point of intersection of the graphs below. Complete the statement below in order to correctly describe what happens to t_{0} if the value of r (in the blue graph of $f(t)=a(1+r)^{t}$ below) is increased, and all other quantities remain the same.

As r increases, does the value of t_{0} increase, decrease, or remain the same? ?

(click on image to enlarge)
Answer(s) submitted:
-
(incorrect)

Problem 5. (1 point)

Consider the four functions graphed in the figure below, and assume the equations for A, B, C, and D can all be written in the form $y=a b^{t}$.

Which function has the largest value for a ? ?

(Click on graph to enlarge)
Answer(s) submitted:
(incorrect)

Problem 6. (5 points)

Consider the function $f(x)=(1 / 4)^{x}$.
(a) Complete the table of values of $f(x)$ for $x=$ $-3,-2,-1,0,1,2,3$.

x	-3	-2	-1	0	1	2	3
$f(x)$	-	-	-		-		-

(b) Which of the graphs below could represent the graph of $f(x)$? ?

A

B

D

E

C

(Click on a graph to enlarge it.)
Answer(s) submitted:

(incorrect)

Problem 7. (2 points)
Find the x - and y-intercepts of $f(x)=7 \log _{4}(-10 x-9)+10$. Write none if such a point does not exist.
x-intercept: \qquad
y-intercept: \qquad
Answer(s) submitted:
-
(incorrect)

Problem 8. (1 point)

Solve for x : $3 e^{2 x}=6 e^{4 x}$
$x=$ \qquad
Answer(s) submitted:
-
(incorrect)
Problem 9. (4 points)

Without a calculator or computer, match the function $4^{x}, x^{3}$, $\ln (x) / \ln (3)$ and $x^{1 / 5}$ to their graphs in the figure.
$f(x)=$ \qquad (the blue curve)
$g(x)=$ \qquad (the red curve)
$h(x)=$ \qquad (the green curve)
$k(x)=$ \qquad (the black curve)
Answer(s) submitted:
(incorrect)

Problem 10. (1 point)

Find the solution of the exponential equation

$$
3 e^{x}=2
$$

in terms of logarithms, or correct to four decimal places.
$x=$ \qquad
Answer(s) submitted:
(incorrect)

Problem 11. (1 point)

Find the exact solution to the equation below.

$$
\frac{\log \left(x^{3}\right)+\log \left(x^{4}\right)}{\log (70 x)}=4
$$

$x=$ \qquad
Answer(s) submitted:
\bullet
(incorrect)

Problem 12. (3 points)

A graph of $Q=12 e^{-0.15 t}$ is given in the figure.
(a) What is the initial value of Q (when $t=0$)? $Q(0)=$ \qquad help (numbers)
(b) Use the graph to estimate the value of t when $Q=6$. $t \approx$ \qquad help (numbers)
(c) Use logs to find the exact value of t when $Q=6$.
$t=$ help (logarithms)

(Click on graph to enlarge)
Answer(s) submitted:

(incorrect)

Problem 13. (1 point)

Find the exact solution to the equation below. (Do not give a decimal approximation.)

$$
\log (3-x)-\log (1+x)=2
$$

$x=$ \qquad help (numbers)
Answer(s) submitted:
(incorrect)

